QI: Exclusive Human Milk Diet for Preterm Infants

Amy B. Hair, MD
Assistant Professor of Pediatrics
Program Director of Neonatal Nutrition
Program Director of NICU Intestinal Rehab Team
Section of Neonatology
Department of Pediatrics
Texas Children’s Hospital
abhair@texaschildrens.org
Disclosures

• I receive research support from:

 - Prolacta Bioscience® for the Human Milk Cream Length of Stay and Bronchopulmonary dysplasia Multicenter Study (Study PI)

• I receive speaker honoraria from Prolacta Bioscience®
Overview

• Human milk use in preterm infants

• Necrotizing enterocolitis and Human Milk

• Fortification of Human Milk

• Exclusive human milk-based diet

• Postnatal Growth Failure

• Implementation
AAP Statement 2012
“Breastfeeding and the Use of Human Milk”

“All preterm infants should receive human milk.”

- Human milk should be fortified, with protein, minerals, and vitamins to ensure optimal nutrient intake for infants weighing <1500 grams at birth

- Pasteurized donor human milk (DHM), appropriately fortified, should be used if mother’s own milk is unavailable or its use is contraindicated

- Significant short and long-term beneficial effects of feeding preterm infants human milk

AAP Statement 2012
“Breastfeeding and the Use of Human Milk”

Significant short and long-term beneficial effects of feeding preterm infants human milk

- Lower rates of sepsis and necrotizing enterocolitis
- Reduction in incidence of NEC include not only lower mortality rates but also lower long-term growth failure and neurodevelopmental disabilities
- Improved feeding tolerance
- Fewer hospital readmissions for illness in the year after NICU discharge
- Improved neurodevelopment

Benefits of Human Milk

- ↓ respiratory tract infections and otitis media
- ↓ sudden infant death syndrome and mortality
- ↓ GI infections
- ↓ risk of celiac disease and IBD
- ↓ asthma, atopic dermatitis and eczema
- ↓ incidence of NEC

- Associated with a decrease in obesity and diabetes
- Beneficial influence on neurodevelopmental outcomes
- Possible reduction in severity of retinopathy of prematurity

Necrotizing Enterocolitis

• NEC is a devastating illness that affects 5.4 to 7.4% of VLBW infants/year (Vermont Oxford Network)

• Despite years of ongoing research, the exact pathophysiology of necrotizing enterocolitis is still not known
 - Multifactorial
 - Mucosal injury leading to an exaggerated immune response, which then results in bacterial translocation, systemic infection, and inflammation
Necrotizing Enterocolitis

Human Milk and NEC

<table>
<thead>
<tr>
<th>Study</th>
<th>No. Infants</th>
<th>Characteristics</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucas et al, 1990</td>
<td>926 infants</td>
<td>Multicenter</td>
<td>- 6-10 times more NEC in formula fed vs. HM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>study</td>
<td>- No difference in type of HM</td>
</tr>
<tr>
<td>Schanler et al, 1999</td>
<td>62 (FHM)</td>
<td>FHM vs. formula</td>
<td>- ↓ NEC in FHM 1 (1.6%) vs. formula 6 (13%)</td>
</tr>
<tr>
<td></td>
<td>46 formula</td>
<td></td>
<td>- ↓ late onset sepsis</td>
</tr>
<tr>
<td>Sisk et al, 2007</td>
<td>222 infants</td>
<td>FHM vs. formula</td>
<td>- Associated with a 6 fold decrease in NEC with an intake of just 50% HM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in 1st 14 days</td>
<td></td>
</tr>
<tr>
<td>Henderson et al, 2007</td>
<td>10 neonatal</td>
<td>Look at practices</td>
<td>- Human milk was associated with lower risk of NEC</td>
</tr>
<tr>
<td></td>
<td>centers -53</td>
<td>associated with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infants</td>
<td>NEC</td>
<td></td>
</tr>
</tbody>
</table>

FHM=Fortified human milk

Pediatrics
‘Survival’ Curves for NEC or death* by amount of human milk (ml/kg/d)

*For NEC or Death after 14 days, adjusted for birth weight, race, PDA treatment, ventilation, and site.

Pasteurized Donor Human Milk

• Human Milk Banking Association of North America

• Medolac / Mothers Milk Cooperative

• Prolacta Bioscience

• Hospital Based Milk Banks
Donor Human Milk

• Human Milk Banking Association of North America
 - 20 Milk Banks

• Medolac- Mother’s Milk Cooperative
 - Mother’s are paid

• Prolacta DHM
 - Extensive screening process
 - Donors have the option to be paid or donate $ to charity
 - DNA fingerprinting, Drug Screens, tests for bacterial contamination
Donor Qualification Requirements

POTENTIAL DONORS:
- Are screened via an online survey and are assigned a number
- Must obtain approval from physician and pediatrician
- Stored milk must be frozen and cold enough to donate

DONOR EBM SCREENING PROCESS:
- A blood test are conducted for presence of HIV 1&2, HTLV I&II, HBV, HCV, and syphilis.
- Full microbiological panel is obtained including Aerobic count, B. cereus, Escherichia coli, Salmonella, Pseudomonas, coliforms, Staphylococcus aureus, yeast and mold.
- Bovine protein
- Will screen for drugs of abuse
Pasteurization

Effect of Pasteurization Conditions on Human Milk Constituents:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Untreated Human Milk</th>
<th>Pasteurized Human Milk</th>
<th>% Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunoglobulin A (mg/mL)</td>
<td>315</td>
<td>230</td>
<td>73</td>
</tr>
<tr>
<td>Secretary IgA</td>
<td>462</td>
<td>379</td>
<td>83</td>
</tr>
<tr>
<td>Lysozyme (IU/mL)</td>
<td>39,000</td>
<td>22,000</td>
<td>57</td>
</tr>
<tr>
<td>Lactoferrin (g/100 mL)</td>
<td>0.24</td>
<td>0.033</td>
<td>14</td>
</tr>
<tr>
<td>Vitamin B6 (µg/100 mL) (g/100 mL)</td>
<td>8.8</td>
<td>7.8</td>
<td>89</td>
</tr>
</tbody>
</table>
Meta-Analysis: Donor Milk vs. Formula

<table>
<thead>
<tr>
<th>Studies</th>
<th>Donor Milk</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross 1983</td>
<td>1/42 (2%)</td>
<td>3/29 (10%)</td>
</tr>
<tr>
<td>Cooper 1984</td>
<td>1/24 (4%)</td>
<td>3/15 (20%)</td>
</tr>
<tr>
<td>Lucas 1990</td>
<td>1/87 (1%)</td>
<td>4/80 (5%)</td>
</tr>
<tr>
<td>Schanler 2005</td>
<td>5/78 (6%)</td>
<td>10/88 (11%)</td>
</tr>
<tr>
<td>Overall</td>
<td>8/231 (3%)</td>
<td>20/212 (9%)</td>
</tr>
</tbody>
</table>

Risk of NEC is reduced significantly with pasteurized donor milk: 0.35 (0.15; 0.81)

Donor Human Milk

- Formula fed infants had a higher incidence of NEC
 - 8 studies included (RCT with preterm or LBW infants)
 - 5 trials (812 infants) showed a statistically significant increased incidence of NEC in formula group vs. donor human milk group
 - Risk ratio 2.5 (CI 1.2, 5.1)

Human Milk Fortification

A response to the need to provide additional nutrients, especially minerals, for premature infants

• Protein
• Calcium
• Phosphorus
• Zinc
Human Milk Fortification

• Liquid HMF (LHMF)-Bovine
 - Each packet/vial of LHMF is 5 mL
 - 1 packet/vial of LHMF + 25mL EBM = 30 mL of 24 kcal/ounce

• Powder HMF-Bovine
 - Each packet/sachet of HMF, when added to 100 mL EBM increases calories by 1 kcal/oz
 - 4 packets/sachets of HMF per 100 mL EBM = 24 kcal/oz

• Donor human milk-derived fortifier
 - 24 kcal/oz: 80 mL EBM+20 mL +4 (4:1)
 - 26 kcal/oz: 70 mL EBM+30 mL +6 (7:3)
 - 28 kcal/oz: 60 mL EBM+40 mL +8 (3:2)
 - 30 kcal/oz: 50 mL EBM+50 mL +10 (1:1)
Human Milk Fortification: Pros & Cons

• Bovine human milk fortifier- *Liquid*
 - Sterile, DHA
 - Displaces more human milk than powder

• Bovine human milk fortifier- *Powder*
 - Displaces less human milk than liquid
 - Not sterile, lower protein

• Donor human milk-based fortifier
 - Early fortification, provides an exclusive human milk protein diet
 - Need to supplement vitamins and iron, $
<table>
<thead>
<tr>
<th>Nutrients per kg/day</th>
<th>AAP¹ 2014</th>
<th>ESPGHAN² 2010</th>
<th>EBM + 4 Similac Powder HMF per 100 mL</th>
<th>EBM + 4 MJ Liquid HMF per 100 mL</th>
<th>EBM + 4 Similac Liquid HMF per 100 mL</th>
<th>EBM + Prolacta+6 per 100 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (mL)</td>
<td>--</td>
<td>--</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>105-130</td>
<td>110-135</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>3.5-4</td>
<td>3.5-4</td>
<td>2.9</td>
<td>3.9</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>100-220</td>
<td>120-140</td>
<td>202</td>
<td>174</td>
<td>179</td>
<td>183</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>60-140</td>
<td>60-90</td>
<td>120</td>
<td>96</td>
<td>102</td>
<td>96</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>2-4</td>
<td>2-3</td>
<td>0.6</td>
<td>2.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Exclusive Human Milk-Based Diet

- The use of an exclusive human milk-based diet in infants ≤ 1250 grams birth weight is associated with a lower rate of necrotizing enterocolitis (NEC)\(^1,2\) and decreased parenteral nutrition days\(^2\).

- An exclusive human milk diet is associated with lower mortality and morbidity compared to a cow milk based protein diet\(^3\).

An Exclusive Human Milk-Based Diet and NEC¹

NEC Surgery

<table>
<thead>
<tr>
<th></th>
<th>Bovine</th>
<th>HM 40</th>
<th>HM 100</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical NEC</td>
<td>8 / 69</td>
<td>1 / 71</td>
<td>1 / 67</td>
<td>2 / 138</td>
</tr>
<tr>
<td>Rate</td>
<td>11.6%</td>
<td>1.4%</td>
<td>1.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.017</td>
<td>0.03</td>
<td>0.0027</td>
<td></td>
</tr>
</tbody>
</table>

A baby receiving bovine products has 8 times higher odds of requiring surgery for NEC.

Exclusive Human Milk-Based Diet

• Sullivan et al1 showed that there is no difference in growth between infants fed an exclusively human milk-based diet and infants fed human milk plus bovine milk-based products.

• However, concerns remain related to risks of slow growth in these infants.

Growth and Donor Human Milk

• Small descriptive studies suggest that the nutrient content of DHM is lower in fat, calories, protein, sodium, and calcium as compared to formula
 - Premature infants have increased nutritional requirements
 - All infants with a birth weight \(\leq 1250g \) are at risk for poor growth and metabolic abnormalities

• One meta-analysis showed that DHM is associated with slower growth in the early postnatal period

Postnatal Growth Restriction/Failure

NICHD Neonatal Research Network reported outcomes of VLBW infants cared for at 14 participating centers

4,438 infants 501-1500 gram BW

-22% of infants were < 10th percentile at birth
 -97% of the VLBW population had growth failure at 36 weeks corrected age

-Infants weighing 501-1000 grams BW
 -17% of infants were < 10th percentile at birth
 -99% had growth failure at 36 weeks corrected age

Postnatal Growth Failure

Clark et al: Database review of growth data

• 24,371 premature infants 23-34 weeks gestation

• 28% of infants had postnatal growth failure

• The incidence of growth failure increased with decreasing gestational age and birth weight

Why is this important?

• Infants 501-1000 grams BW were divided into quartiles of in-hospital growth velocity rates
 – 495 infants were evaluated at 18-22 months CGA
 – As the rate of weight gain increased from 12.0 to 21.2 g/kg/day (quartile 1 to 4) and head circumference increased from 0.77 to 1.07 cm/wk
• the incidence decreased significantly for:
 • Cerebral palsy, Bayley II MDI 70 and PDI 70, abnormal neurologic exam, neurodevelopmental impairment and need for re-hospitalization

Human Milk Feeding Supports Adequate Growth

- Exclusive Human Milk-Based Diet
- Early and rapid advancement of fortification\(^1\)
 - 104 infants, consecutively followed, BW ≤ 1250 g, received diet until 34 weeks PMA
 - Weight gain 24.8 ± 5.4 g/kg/day, length 0.99 ± 0.23 cm/week, HC 0.72 ± 0.14 cm/week
 - Compared to human milk-fed cohorts (Sullivan et al\(^2\))
 - Infants had greater growth in weight and length
 - 43% of infants had postnatal growth failure

<table>
<thead>
<tr>
<th></th>
<th>Hair et al Study(^1)</th>
<th>Sullivan et al. J Pediatrics. 2010(^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Milk + HMF 60 (n=104)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to full feeds(^*)</td>
<td>18.2 ± 10.6</td>
<td>24.4 ± 12.7</td>
<td><0.001</td>
</tr>
<tr>
<td>TPN days(^†)</td>
<td>13 (10,19)</td>
<td>20 (11,33)</td>
<td><0.001</td>
</tr>
<tr>
<td>Feeds initiated (DOL)(^*)</td>
<td>3.3 ± 2.9</td>
<td>5.6 ± 6.6</td>
<td>0.56</td>
</tr>
<tr>
<td>Fortification of feeds (DOL)(^*)</td>
<td>13.0 ± 8.3</td>
<td>14.1 ± 9.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Human Milk + HMF 40 (n=71)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to full feeds(^*)</td>
<td>24.4 ± 12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPN days(^†)</td>
<td>20 (11,33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds initiated (DOL)(^*)</td>
<td>5.6 ± 6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortification of feeds (DOL)(^*)</td>
<td>14.1 ± 9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Milk + HMF 100 (n=67)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to full feeds(^*)</td>
<td>26.5 ± 18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPN days(^†)</td>
<td>20 (13,34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds initiated (DOL)(^*)</td>
<td>4.3 ± 3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortification of feeds (DOL)(^*)</td>
<td>21.0 ± 14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovine (n=69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to full feeds(^*)</td>
<td>25.0 ± 13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPN days(^†)</td>
<td>22 (13,34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds initiated (DOL)(^*)</td>
<td>4.7 ± 4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortification of feeds (DOL)(^*)</td>
<td>18.4 ± 9.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^*\)Mean ± SD, \(^†\)Median (25\(^{th}\), 75\(^{th}\) percentile). DOL = day of life; TPN = total parenteral nutrition.

Costs- Exclusive HM Diet

• Costs of NEC and cost-effectiveness of exclusively human milk-based diet compared to bovine based diet in extremely premature infants

• NEC $74,004 and NEC requiring surgery $198,040
 - Costs over the hospitalization for a preterm infant

• 100% human milk diet infants had decreased length of stay = cost savings of $8,167

Implementation

• Increase maternal milk supply for premature infants
 - Pumps at the bedside
 - Education about benefits of mother’s own milk
 - Lactation Support

• Use of Pasteurized Donor Human Milk
 - Milk Bank
 - Availability
 - Drop off site for donated human milk
 - Potential variability in energy density of donor human milk depending on milk bank
Implementation Plan

• Evaluate your highest risk population for NEC and feeding intolerance

• Gather data regarding NEC rates, TPN days, and feeding intolerance so you have a baseline

• Implement Donor Human Milk and DHM Fortifier
 - Evaluate your results using balancing measures
 - If cost is an issue consider collecting data including length of stay as a surrogate marker
Positive Outcomes to Follow

- Rates of Necrotizing Enterocolitis
- Central line days, Parenteral Nutrition Days
 - CLABSI infection
- Growth- weight, length, head circumference
- Postnatal growth failure
- Feeding tolerance- number of times feeds are stopped and restarted
- Costs $$, Decreased Length of Stay
- Number of infants not transferred to higher level of care
Balancing Measures

• Extra Costs
 - Administrative
 - Staffing
 • Milk Bank Techs, Nurses, Preparing Milk
 - Donor Milk and DHM Fortifier Storage (Freezer)

• Implementation
 - Education of Staff
 - Implement Consent / Assent of Parents
 - Risk of Milk Errors

• Possible Delay of Enteral Feeding
 - Awaiting Mother’s own milk or Donor Human Milk Consent
Advocacy to Prevent NEC

www.NECsociety.org
Thank You!

abhair@bcm.edu